Molecular mechanism of glucocorticoid-induced hyperglycemia

Keywords: glucocorticoid, corticosteroid, hyperglycemia, insulin, sceletal muscle, protein kinase, beta cells, pancreatic beta cells, protein kinase B, immunosuppressive drugs, insulin receptor substrate, adipose triglyceride lipase, glucose levels, esterified fatty acids

Abstract

Glucocorticoids are widely used as strong anti-inflammatory and immunosuppressive drugs to treat various diseases. However, the use of glucocorticoids can cause several side effects, such as hyperglycemia. This review aims to discuss the effect of glucocorticoids on increasing glucose in molecular levels based on literature studies. A literature searching was carried out on the PubMed, Science Direct, and Google Scholar databases published in 2010-2020. Glucocorticoids can cause an increase in blood glucose levels by several mechanisms. In the liver, glucocorticoids increase endogenous plasma glucose and stimulate gluconeogenesis. Glucocorticoids increase the production of non-esterified fatty acids which affect the signal transduction of insulin receptor substrate-1 in skeletal muscle. In adipose, glucocorticoids increase lipolysis and visceral adiposity through increased transcription and expression of protein adipose triglyceride lipase and hormone-sensitive lipase. In pancreatic beta cells, glucocorticoids directly inhibit the beta cell response to glucose through the role of protein kinase B and protein kinase C. At the molecular level, glucocorticoids can cause hyperglycemia through mechanisms in the liver, skeletal muscle tissue, adipose tissue, and pancreatic beta cells.

References

Ramamoorthy S, Cidlowski JA. Corticosteroids: mechanisms of action in health and disease. Rheum Dis Clin North Am. 2016;42: 15-31, vii. https://doi.org/10.1016/j.rdc.2015.08.002

Liu D, Ahmet A, Ward L, Krishnamoorthy P, Mandelcorn ED, Leigh R, et al. A practical guide to the monitoring and management of the complications of systemic corticosteroid therapy. Allergy Asthma Clin Immunol. 2013;9: 30. https://doi.org/10.1186/1710-1492-9-30

Perez A, Jansen-Chaparro S, Saigi I, Bernal-Lopez MR, Miñambres I, Gomez-Huelgas R. Glucocorticoid-induced hyperglycemia. J Diabetes. 2014;6: 9-20. https://doi.org/10.1111/1753-0407.12090

Baker JM, Pace HA, Ladesich JB, Simon SD. Evaluation of the Impact of Corticosteroid Dose on the Incidence of Hyperglycemia in Hospitalized Patients with an Acute Exacerbation of Chronic Obstructive Pulmonary Disease. Hosp Pharm. 2016;51: 296-304. https://doi.org/10.1310/hpj5104-296

Liu X, Zhu X, Miao Q, Ye H, Zhang Z, Li Y-M. Hyperglycemia induced by glucocorticoids in nondiabetic patients: a meta-analysis. Ann Nutr Metab. 2014;65: 324-332. https://doi.org/10.1159/000365892

Tamez-Pérez HE, Quintanilla-Flores DL, Rodríguez-Gutiérrez R, González-González JG, Tamez-Peña AL. Steroid hyperglycemia: Prevalence, early detection and therapeutic recommendations: A narrative review. World J Diabetes. 2015;6: 1073-1081. https://doi.org/10.4239/wjd.v6.i8.1073

Kuo T, Lew MJ, Mayba O, Harris CA, Speed TP, Wang J-C. Genome-wide analysis of glucocorticoid receptor-binding sites in myotubes identifies gene networks modulating insulin signaling. Proc Natl Acad Sci USA. 2012;109: 11160-11165. https://doi.org/10.1073/pnas.1111334109

Feng B, He Q, Xu H. FOXO1-dependent up-regulation of MAP kinase phosphatase 3 (MKP-3) mediates glucocorticoid-induced hepatic lipid accumulation in mice. Mol Cell Endocrinol. 2014;393: 46-55. https://doi.org/10.1016/j.mce.2014.06.001

Suh S, Park MK. Glucocorticoid-Induced Diabetes Mellitus: An Important but Overlooked Problem. Endocrinol Metab (Seoul). 2017;32: 180-189. https://doi.org/10.3803/EnM.2017.32.2.180

van Raalte DH, Brands M, van der Zijl NJ, Muskiet MH, Pouwels PJW, Ackermans MT, et al. Low-dose glucocorticoid treatment affects multiple aspects of intermediary metabolism in healthy humans: a randomised controlled trial. Diabetologia. 2011;54: 2103-2112. https://doi.org/10.1007/s00125-011-2174-9

Cui A, Fan H, Zhang Y, Zhang Y, Niu D, Liu S, et al. Dexamethasone-induced Krüppel-like factor 9 expression promotes hepatic gluconeogenesis and hyperglycemia. J Clin Invest. 2019;129: 2266-2278. https://doi.org/10.1172/JCI66062

Kuo T, McQueen A, Chen T-C, Wang J-C. Regulation of glucose homeostasis by glucocorticoids. Adv Exp Med Biol. 2015;872: 99-126. https://doi.org/10.1007/978-1-4939-2895-8_5

Boortz KA, Syring KE, Lee RA, Dai C, Oeser JK, McGuinness OP, et al. G6PC2 modulates the effects of dexamethasone on fasting blood glucose and glucose tolerance. Endocrinology. 2016;157: 4133-4145. https://doi.org/10.1210/en.2016-1678

Dunford EC, Riddell MC. The Metabolic Implications of Glucocorticoids in a High-Fat Diet Setting and the Counter-Effects of Exercise. Metabolites. 2016;6. https://doi.org/10.3390/metabo6040044

Gruber A, Cornaciu I, Lass A, Schweiger M, Poeschl M, Eder C, et al. The N-terminal region of comparative gene identification-58 (CGI-58) is important for lipid droplet binding and activation of adipose triglyceride lipase. J Biol Chem. 2010;285: 12289-12298. https://doi.org/10.1074/jbc.M109.064469

Lu X, Yang X, Liu J. Differential control of ATGL-mediated lipid droplet degradation by CGI-58 and G0S2. Cell Cycle. 2010;9: 2719-2725. https://doi.org/10.4161/cc.9.14.12181

Protzek AOP, Costa-Júnior JM, Rezende LF, Santos GJ, Araújo TG, Vettorazzi JF, et al. Augmented β-Cell Function and Mass in Glucocorticoid-Treated Rodents Are Associated with Increased Islet Ir-β /AKT/mTOR and Decreased AMPK/ACC and AS160 Signaling. Int J Endocrinol. 2014;2014: 983453. https://doi.org/10.1155/2014/983453

Rafacho A, Marroquí L, Taboga SR, Abrantes JLF, Silveira LR, Boschero AC, et al. Glucocorticoids in vivo induce both insulin hypersecretion and enhanced glucose sensitivity of stimulus-secretion coupling in isolated rat islets. Endocrinology. 2010;151: 85-95. https://doi.org/10.1210/en.2009-0704

Zhang J, Liu F. Tissue-specific insulin signaling in the regulation of metabolism and aging. IUBMB Life. 2014;66: 485-495. https://doi.org/10.1002/iub.1293

Campbell JE, Peckett AJ, D'souza AM, Hawke TJ, Riddell MC. Adipogenic and lipolytic effects of chronic glucocorticoid exposure. Am J Physiol Cell Physiol. 2011;300: C198-209. https://doi.org/10.1152/ajpcell.00045.2010

Magomedova L, Cummins CL. Glucocorticoids and metabolic control. Handb Exp Pharmacol. 2016;233: 73-93. https://doi.org/10.1007/164_2015_1

Ramshanker N, Jessen N, Voss TS, Pedersen SB, Jørgensen JOL, Nielsen TS, et al. Effects of short-term prednisolone treatment on indices of lipolysis and lipase signaling in abdominal adipose tissue in healthy humans. Metab Clin Exp. 2019;99: 1-10. https://doi.org/10.1016/j.metabol.2019.06.013

Christianson JL, Boutet E, Puri V, Chawla A, Czech MP. Identification of the lipid droplet targeting domain of the Cidea protein. J Lipid Res. 2010;51: 3455-3462. https://doi.org/10.1194/jlr.M009498

Grahn THM, Kaur R, Yin J, Schweiger M, Sharma VM, Lee M-J, et al. Fat-specific protein 27 (FSP27) interacts with adipose triglyceride lipase (ATGL) to regulate lipolysis and insulin sensitivity in human adipocytes. J Biol Chem. 2014;289: 12029-12039. https://doi.org/10.1074/jbc.M113.539890

Singh M, Kaur R, Lee M-J, Pickering RT, Sharma VM, Puri V, et al. Fat-specific protein 27 inhibits lipolysis by facilitating the inhibitory effect of transcription factor Egr1 on transcription of adipose triglyceride lipase. J Biol Chem. 2014;289: 14481-14487. https://doi.org/10.1074/jbc.C114.563080

van Raalte DH, Nofrate V, Bunck MC, van Iersel T, Elassaiss Schaap J, Nässander UK, et al. Acute and 2-week exposure to prednisolone impair different aspects of beta-cell function in healthy men. Eur J Endocrinol. 2010;162: 729-735. https://doi.org/10.1530/EJE-09-1034

Linssen MML, van Raalte DH, Toonen EJM, Alkema W, van der Zon GC, Dokter WH, et al. Prednisolone-induced beta cell dysfunction is associated with impaired endoplasmic reticulum homeostasis in INS-1E cells. Cell Signal. 2011;23: 1708-1715. https://doi.org/10.1016/j.cellsig.2011.06.002

Rafacho A, Abrantes JLF, Ribeiro DL, Paula FM, Pinto ME, Boschero AC, et al. Morphofunctional alterations in endocrine pancreas of short- and long-term dexamethasone-treated rats. Horm Metab Res. 2011;43: 275-281. https://doi.org/10.1055/s-0030-1269896

Abdelmannan D, Tahboub R, Genuth S, Ismail-Beigi F. Effect of dexamethasone on oral glucose tolerance in healthy adults. Endocr Pract. 2010;16: 770-777. https://doi.org/10.4158/EP09373.OR

van Raalte DH, Kwa KAA, van Genugten RE, Tushuizen ME, Holst JJ, Deacon CF, et al. Islet-cell dysfunction induced by glucocorticoid treatment: potential role for altered sympathovagal balance? Metab Clin Exp. 2013;62: 568-577. https://doi.org/10.1016/j.metabol.2012.10.007

Rafacho A, Ortsäter H, Nadal A, Quesada I. Glucocorticoid treatment and endocrine pancreas function: implications for glucose homeostasis, insulin resistance and diabetes. J Endocrinol. 2014;223: R49-62. https://doi.org/10.1530/JOE-14-0373

Published
2021-08-31
How to Cite
Sari, D. A., Samodra, G., & Kusuma, I. Y. (2021). Molecular mechanism of glucocorticoid-induced hyperglycemia. Pharmacy Reports, 1(1), 1. https://doi.org/10.51511/pr.1