In silico studies of isatinyl-2-aminobenzoylhydrazone transition metal complexes against cyclin-dependent kinase 6 (CDK6)

  • Yesaya Reformyada Nusantoro Department of Chemistry, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia
  • Arif Fadlan Department of Chemistry, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia https://orcid.org/0000-0002-6138-4015
Keywords: CDK-6 inhibitors, drug-likeness, ADMET, isatinyl-2-aminobenzoylhydrazone, molecular docking, transition metal complex, cancer therapy, transition metal, metal complexes, complex compounds, pharmacological properties, cyclin dependent kinase, cycle progression, cellular pathways

Abstract

Cyclin-dependent kinase 6 (CDK6) is an important member of protein kinases, involving in many cellular pathways especialy cell cycle progression. Thus, CDK6 is a promising target in cancer therapy. This report aims to predict inhibiton of CDK6 by some complex compounds by using molecular docking and pharmacological properties analysis. Those compounds are isatinyl-2-aminobenzoylhydrazone (ISABH) and cobalt (II), nickel (II), copper (II), and zinc (II) transition metal complexes. The molecular docking against CDK6 (PDB code: 3NUP) revealed that ISABH/ISABH-transition metal complexes established ligand-protein interaction as expressed by negative binding affinity values. Drug-likeness by SwissADME indicated that ISABH and Ni-ISABH met the Lipinski’s rule of five. Both compounds also showed reasonable pharmacological criteria by admetSAR.

References

Lee DJ, Zeidner JF. Cyclin-dependent kinase (CDK) 9 and 4/6 inhibitors in acute myeloid leukemia (AML): a promising therapeutic approach. Expert Opin Investig Drugs. 2019;28: 989-1001. https://doi.org/10.1080/13543784.2019.1678583

Pavlova NN, Thompson CB. The emerging hallmarks of cancer metabolism. Cell Metab. 2016;23: 27-47. https://doi.org/10.1016/j.cmet.2015.12.006

Mohammad T, Batra S, Dahiya R, Baig MH, Rather IA, Dong J-J, et al. Identification of High-Affinity Inhibitors of Cyclin-Dependent Kinase 2 Towards Anticancer Therapy. Molecules. 2019;24. https://doi.org/10.3390/molecules24244589

Lim S, Kaldis P. Cdks, cyclins and CKIs: roles beyond cell cycle regulation. Development. 2013;140: 3079-3093. https://doi.org/10.1242/dev.091744

Zhang M, Zhang L, Hei R, Li X, Cai H, Wu X, et al. CDK inhibitors in cancer therapy, an overview of recent development. Am J Cancer Res. 2021;11: 1913-1935.

Narasimha AM, Kaulich M, Shapiro GS, Choi YJ, Sicinski P, Dowdy SF. Cyclin D activates the Rb tumor suppressor by mono-phosphorylation. Elife. 2014;3. https://doi.org/10.7554/eLife.02872

Chen L, Wang X, Cheng H, Zhang W, Liu Y, Zeng W, et al. Cyclin Y binds and activates CDK4 to promote the G1/S phase transition in hepatocellular carcinoma cells via Rb signaling. Biochem Biophys Res Commun. 2020; https://doi.org/10.1016/j.bbrc.2020.09.127

Chen F, Liu C, Zhang J, Xu W, Zhang Y. Progress of CDK4/6 inhibitor palbociclib in the treatment of cancer. Anticancer Agents Med Chem. 2018;18: 1241-1251. https://doi.org/10.2174/1871521409666170412123500

Varun, Sonam, Kakkar R. Isatin and its derivatives: a survey of recent syntheses, reactions, and applications. Medchemcomm. 2019;10: 351-368. https://doi.org/10.1039/C8MD00585K

Brandão P, Marques C, Burke AJ, Pineiro M. The application of isatin-based multicomponent-reactions in the quest for new bioactive and druglike molecules. Eur J Med Chem. 2021;211: 113102. https://doi.org/10.1016/j.ejmech.2020.113102

Al-Warhi T, El Kerdawy AM, Aljaeed N, Ismael OE, Ayyad RR, Eldehna WM, et al. Synthesis, Biological Evaluation and In Silico Studies of Certain Oxindole-Indole Conjugates as Anticancer CDK Inhibitors. Molecules. 2020;25. https://doi.org/10.3390/molecules25092031

Al-Salem HS, Arifuzzaman M, Alkahtani HM, Abdalla AN, Issa IS, Alqathama A, et al. A Series of Isatin-Hydrazones with Cytotoxic Activity and CDK2 Kinase Inhibitory Activity: A Potential Type II ATP Competitive Inhibitor. Molecules. 2020;25. https://doi.org/10.3390/molecules25194400

Ali AQ, Teoh SG, Eltayeb NE, Ahamed MBK, Majid AA. Synthesis of nickel(II) complexes of isatin thiosemicarbazone derivatives: in vitro anti-cancer, DNA binding, and cleavage activities. J Coord Chem. 2014;67: 3380-3400. https://doi.org/10.1080/00958972.2014.959943

Ferraz de Paiva RE, Vieira EG, Rodrigues da Silva D, Wegermann CA, Costa Ferreira AM. Anticancer Compounds Based on Isatin-Derivatives: Strategies to Ameliorate Selectivity and Efficiency. Front Mol Biosci. 2020;7: 627272. https://doi.org/10.3389/fmolb.2020.627272

Cho YS, Borland M, Brain C, Chen CH-T, Cheng H, Chopra R, et al. 4-(Pyrazol-4-yl)-pyrimidines as selective inhibitors of cyclin-dependent kinase 4/6. J Med Chem. 2010;53: 7938-7957. https://doi.org/10.1021/jm100571n

Hunoor RS, Patil BR, Badiger DS, V. M. C, Muchchandi IS, Gudasi KB. Co(II), Ni(II), Cu(II) and Zn(II) complexes of isatinyl-2-aminobenzoylhydrazone: synthesis, characterization and anticancer activity. Appl Organomet Chem. 2015;29: 101-108. https://doi.org/10.1002/aoc.3252

Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010;31: 455-461. https://doi.org/10.1002/jcc.21334

Dallakyan S, Olson AJ. Small-molecule library screening by docking with PyRx. Methods Mol Biol. 2015;1263: 243-250. https://doi.org/10.1007/978-1-4939-2269-7_19

Allen WJ, Rizzo RC. Implementation of the Hungarian algorithm to account for ligand symmetry and similarity in structure-based design. J Chem Inf Model. 2014;54: 518-529. https://doi.org/10.1021/ci400534h

Daina A, Michielin O, Zoete V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep. 2017;7: 42717. https://doi.org/10.1038/srep42717

Yang H, Lou C, Sun L, Li J, Cai Y, Wang Z, et al. admetSAR 2.0: web-service for prediction and optimization of chemical ADMET properties. Bioinformatics. 2019;35: 1067-1069. https://doi.org/10.1093/bioinformatics/bty707

Ramírez D, Caballero J. Is It Reliable to Take the Molecular Docking Top Scoring Position as the Best Solution without Considering Available Structural Data? Molecules. 2018;23. https://doi.org/10.3390/molecules23051038

Bell EW, Zhang Y. DockRMSD: an open-source tool for atom mapping and RMSD calculation of symmetric molecules through graph isomorphism. J Cheminform. 2019;11: 40. https://doi.org/10.1186/s13321-019-0362-7

Selvaganapathy M, Raman N. Pharmacological activity of a few transition metal complexes: A short review. J Chem Biol Ther. 2016;01. https://doi.org/10.4172/2572-0406.1000108

Gorgulu G, Cicek MB, Dede B. Novel aminoketooxime ligand and its cu(ii) and mn(ii) complexes: synthesis, characterization and molecular docking studies. Acta Phys Pol A. 2018;133: 250-255. https://doi.org/10.12693/APhysPolA.133.250

Chen D, Li Y, Guo W, Li Y, Savidge T, Li X, et al. The shielding effect of metal complexes on the binding affinities of ligands to metalloproteins. Phys Chem Chem Phys. 2019;21: 205-216. https://doi.org/10.1039/C8CP06555A

Lipinski CA. Drug-like properties and the causes of poor solubility and poor permeability. J Pharmacol Toxicol Methods. 2000;44: 235-249. https://doi.org/10.1016/S1056-8719(00)00107-6

Daneman R, Prat A. The blood-brain barrier. Cold Spring Harb Perspect Biol. 2015;7: a020412. https://doi.org/10.1101/cshperspect.a020412

Bohnert T, Gan L-S. Plasma protein binding: from discovery to development. J Pharm Sci. 2013;102: 2953-2994. https://doi.org/10.1002/jps.23614

Published
2021-08-10
How to Cite
Nusantoro, Y. R., & Fadlan, A. (2021). In silico studies of isatinyl-2-aminobenzoylhydrazone transition metal complexes against cyclin-dependent kinase 6 (CDK6). Pharmacy Reports, 1(1), 4. https://doi.org/10.51511/pr.4