Potential of cocoa (Theobroma cacao) shell for diabetic neuropathy targeting transient receptor potential canonical (TRPC): an in silico study
Abstract
Diabetic neuropathy, a painful complication of diabetes mellitus, may potentially be treated with compounds found in cocoa pods. This study investigates the interactions of various flavonoids (catechin, epicatechin, quercetin, luteolin, apigenin, naringenin, and procyanidin) contained in the cocoa pod to the Canonical Transient Receptor Potential (TRPC6) receptor. Molecular docking, facilitated by Autodock software, was employed to predict the binding affinities of these compounds to TRPC6. This involved preparing the molecular structures of the flavonoids and the TRPC6 protein for simulation. The simulation provided insights into the binding efficiencies and interaction energies between the flavonoids and TRPC6. The findings indicate that procyanidin and quercetin exhibit the highest binding energies, at -7.15 kcal/mol and -6.37 kcal/mol, respectively. Procyanidin interacts with the amino acid residues Ala508, Arg609, Arg758, Asn765, Asp530, Glu512, His446, and Met505, while quercetin binds to Arg758, Asp530, Glu512, and Glu524. These results highlight the potential of quercetin and procyanidin as candidates for the development of TRPC6-targeted treatments for diabetic neuropathy. This study lays the groundwork for the creation of new, effective, and safe diabetic neuropathy medications.
References
Saeedi P, Petersohn I, Salpea P, Malanda B, Karuranga S, Unwin N, et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res Clin Pract. 2019;157: 107843. https://doi.org/10.1016/j.diabres.2019.107843
Bansal D, Gudala K, Muthyala H, Esam HP, Nayakallu R, Bhansali A. Prevalence and risk factors of development of peripheral diabetic neuropathy in type 2 diabetes mellitus in a tertiary care setting. J Diabetes Investig. 2014;5: 714-21. https://doi.org/10.1111/jdi.12223
Çakici N, Fakkel TM, van Neck JW, Verhagen AP, Coert JH. Systematic review of treatments for diabetic peripheral neuropathy. Diabet Med. 2016;33: 1466-1476. https://doi.org/10.1111/dme.13083
Wang H, Cheng X, Tian J, Xiao Y, Tian T, Xu F, et al. TRPC channels: Structure, function, regulation and recent advances in small molecular probes. Pharmacol Ther. 2020;209: 107497. https://doi.org/10.1016/j.pharmthera.2020.107497
Roa-Coria JE, Pineda-Farias JB, Barragán-Iglesias P, Quiñonez-Bastidas GN, Zúñiga-Romero Á, Huerta-Cruz JC, et al. Possible involvement of peripheral TRP channels in the hydrogen sulfide-induced hyperalgesia in diabetic rats. BMC Neurosci. 2019;20: 1. https://doi.org/10.1186/s12868-018-0483-3
Li M, Li Q, Zhao Q, Zhang J, Lin J. Luteolin improves the impaired nerve functions in diabetic neuropathy: behavioral and biochemical evidences. Int J Clin Exp Pathol. 2015;8: 10112-20.
Davari M, Amani B, Amani B, Khanijahani A, Akbarzadeh A, Shabestan R. Pregabalin and gabapentin in neuropathic pain management after spinal cord injury: a systematic review and meta-analysis. Korean J Pain. 2020;33: 3-12. https://doi.org/10.3344/kjp.2020.33.1.3
Hosseini A, Abdollahi M. Diabetic neuropathy and oxidative stress: therapeutic perspectives. Oxid Med Cell Longev. 2013;2013: 168039. https://doi.org/10.1155/2013/168039
Chen J, Mangelinckx S, Adams A, Wang Z, Li W, De Kimpe N. Natural Flavonoids as Potential Herbal Medication for the Treatment of Diabetes Mellitus and its Complications. Nat Prod Commun. 2015;10: 1934578X1501000. https://doi.org/10.1177/1934578X1501000140
Sudayasa IP, Alifariki LO, Salma WO, Iskandar MR. Pengaruh ekstrak kulit buah kakao (Theobroma cacao L.) terhadap kadar gula darah Kajian Riset Hewan Coba Model Diabetes Mellitus. Siagian HJ, editor. Jawa Tengah: PT. PENA PERSADA KERTA UTAMA; 2022.
Kababie-Ameo R, Rabadán-Chávez GM, Vázquez-Manjarrez N, Gutiérrez-Salmeán G. Potential applications of cocoa (Theobroma cacao) on diabetic neuropathy: mini-review. Front Biosci (Landmark Ed). 2022;27: 57. https://doi.org/10.31083/j.fbl2702057
Balachandran C, Emi N, Arun Y, Yamamoto Y, Ahilan B, Sangeetha B, et al. In vitro anticancer activity of methyl caffeate isolated from Solanum torvum Swartz. fruit. Chem Biol Interact. 2015;242: 81-90. https://doi.org/10.1016/j.cbi.2015.09.023
Putra IMH, Pratama IPAAC, Putra KDA, Pradnyaswari GAD, Laksmiani NPL. The potency of alpha-humulene as HER-2 inhibitor by molecular docking. Pharmacy Reports. 2022;2: 19. https://doi.org/10.51511/pr.19
Wahyu Suryadi Ningrat. Docking Molekuler Senyawa Brazilein Herba Caesalpina Sappanis Lignum Pada Mycobacterium Tuberculosis Inha Sebagai Antituberkulosis. Inhealth : Indonesian Health Journal. 2022;1: 29-34. https://doi.org/10.56314/inhealth.v1i1.19
Pratama AB, Herowati R, Ansory HM. Studi Docking Molekuler Senyawa Dalam Minyak Atsiri Pala (Myristica fragrans H.) Dan Senyawa Turunan Miristisin Terhadap Target Terapi Kanker Kulit. Majalah Farmaseutik. 2021;17: 233. https://doi.org/10.22146/farmaseutik.v17i2.59297
Drie J. Pharmacophore-Base Virtual Screening: A Practical Prespective. 1st ed. In: Alvarez J, Shoichet B, editors. 1st ed. Boca Raton: CRC Press; 2005. p. 169. https://doi.org/10.1201/9781420028775
Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 2012;64: 4-17. https://doi.org/10.1016/j.addr.2012.09.019
Beale JM, Block JH. Wilson and Gisvold's Textbook of Organic Medicinal and Pharmaceutical Chemistry. 12th edition. Troy DB, editor. New York: Lippincott Williams & Wilkins, a Wolters Kluwer business.; 2011.
Frimayanti N. Simulasi Molecular Dynamic (MD) Senyawa Analog Kalkon Sebagai Inhibitor Untuk Sel Kanker Paru A549. Jurnal Penelitian Farmasi Indonesia. 2021;9: 56-60. https://doi.org/10.51887/jpfi.v9i2.852
Guo W, Tang Q, Wei M, Kang Y, Wu J-X, Chen L. Structural mechanism of human TRPC3 and TRPC6 channel regulation by their intracellular calcium-binding sites. Neuron. 2022;110: 1023-1035.e5. https://doi.org/10.1016/j.neuron.2021.12.023

Copyright (c) 2022 Authors

This work is licensed under a Creative Commons Attribution 4.0 International License.